COMMODORE 128

PROGRAMMER’S
REFERENCE GUIDE

Bantam Computer Books

Ask your bookseller for the books you have missed

THE AMIGADOS MANUAL
by Commodore-Amiga, Inc.

THE APPLE //c BOOK
by Bill O’Brien

THE ART OF DESKTOP
PUBLISHING

By Tony Bove, Cheryl Rhodes,
and Wes Thomas

ARTIFICIAL INTELLIGENCE
ENTERS THE MARKETPLACE
by Larry R. Harris and

Dwight B. Davis

THE BIG TIP BOOK FOR
THE APPLE II SERIES
by Bert Kersey and

Bill Sanders

THE COMMODORE 64 SURVIVAL
MANUAL
by Winn L. Rosch

COMMODORE 128 PROGRAMMER’S
REFERENCE GUIDE
by Commodore Business Machines, Inc.

THE COMPUTER AND THE BRAIN
by Scott Ladd/
The Red Feather Press

EXPLORING ARTIFICIAL INTELLIGENCE
ON YOUR APPLE 1l
by Tim Hartnell

EXPLORING ARTIFICIAL INTELLIGENCE
ON YOUR COMMODORE 64
by Tim Hartnell

EXPLORING ARTIFICIAL INTELLIGENCE
ON YOUR IBM PC
by Tim Hartnell

EXPLORING THE UNIX ENVIRONMENT
by The Waite Group/Irene Pasternack

FRAMEWORK FROM THE GROUND UP
by The Waite Group/Cynthia Spoor and
Robert Warren

HOW TO GET THE MOST OUT OF
COMPUSERVE, 2d ed.
by Charles Bowen and David Peyton

HOW TO GET THE MOST OUT OF THE
SOURCE
by Charles Bowen and David Peyton

THE MACINTOSH
by Bill O’Brien

MACINTOSH C PRIMER PLUS
by The Waite Group/Stephen W. Prata

THE NEW jr: A GUIDE TO IBM’S PCjr
by Winn L. Rosch

ORCHESTRATING SYMPHONY
by The Waite Group/Dan Shafer with
Mary Johnson

PC-DOS/MS-DOS

User's Guide to the Most Popular Operating
System for Personal Computers

by Alan M. Boyd

POWER PAINTING: COMPUTER GRAPHICS
ON THE MACINTOSH

by Verne Bauman and Ronald Kidd/
illustrated by Gasper Vaccaro

SMARTER TELECOMMUNICATIONS
Hands-On Guide to On-Line Computer Services
by Charles Bowen and Stewart Schneider

SWING WITH JAZZ: LOTUS JAZZ ON THE
MACINTOSH
by Datatech Publications Corp./S. Michael McCarty

UNDERSTANDING EXPERT SYSTEMS
by The Waite Group/Mike Van Horn

USER’S GUIDE TO THE AT&T PC 6300
PERSONAL COMPUTER

by David B. Peatroy, Ricardo A. Anzaldua,
H. A. Wohlwend, and Datatech Publications
Corp.

COMMODORE 128

PROGRAMMER’S
REFERENCE GUIDE

COMMODORE BUSINESS MACHINES, INC.

2
® \é::
O

b
BANTAM BOOKS

COMMODORE 128 PROGRAMMER'S REFERENCE GUIDE.
A Bantam Book | February 1986

C dore 64 and C fore 128 are registered trademarks of Commodore
Electronics. Lid.

CPiM and CPIM Plus Version 3.0 are registered trademarks of Digital Research
Inc.

Perfect is a registered trademark of Perfect Software.
TouchTone is a registered trademark of AT&T.
WordStar is a registered rademark of MicroPro International Corporation.

Grateful acknowledgment is made for permission to reprint two bars of Invention
13 (Inventio 13} by Johann Sebastian Bach. Sheet music copyright © C. F. Peters,
Corp., New York.

Book design by Ann Gold.

Cover design by Jo Ellen Temple.

All rights reserved.

Copyright © 1986 by Commodore Capital, Inc.

This book may not be reproduced in whole or in part, by
mimeograph or any other means, without permission.
For informarion address: Bantam Books, Inc.

ISBN 0-553-34292-4

Published simultaneously in the United States and Canada

Bantam Books are published by Bantam Books, Inc. lts trademark, consisting of

the words "Bamam Books” and the portrayal of a rooster, is Registered in U.S.
Patent and Trademark Office and in other countries. Marca Registrada. Bantam
Books, Inc., 666 Fifth Avenue, New York, New York 10103,

PRINTED IN THE UNITED STATES OF AMERICA

HL 09 8 76 5 4 3

CONTENTS

“““““ Chapter 1
Introduction t
Chapter 2
BASIC Building Blocks and BASIC 7.0 Encyclopedia 11
Chapter 3

““““ ‘ One Step Beyond Simple BASIC 91
Chapter 4
Commodore 128 Graphics Programming 109
Chapter 5
Machine Language on the Commodore 128 123
Chapter 6
How to Enter Machine Language Programs Into the

Commodore 128 181

Chapter 7
Mixing Machine Language and BASIC 197
Chapter 8
The Power Behind Commodore 128 Graphics 207
Chapter 9
Sprites 265
Chapter 10
Programming the 80-Column (8563) Chip 291
Chapter 11
Sound and Music on the Commodore 128 335

Chapter 12

Chapter 13

The Commodore 128 Operating System 401
Chapter 14
CP/M 3.0 on the Commodore 128 477
Chapter 15
The Commodore 128 and Commodore 64 Memory Maps 501
Chapter 16
C128 Hardware Specifications 555
Appendixes 643
Glossary 731

Index 739

ACKNOWLEDGMENTS

Written by Larry Greenley

and

Fred Bowen

Bil Herd

Dave Haynie

Terry Ryan

Von Ertwine

Kim Eckert

Mario Eisenbacher

Norman McVey

The authors are deeply indebted to the many people who have contributed to the
preparation of this book. Special thanks go to Jim Gracely of Commodore Publications,
who reviewed the entire manuscript for technical accuracy and provided important
corrections, clarifications, and user-oriented suggestions, and to Steve Beats and Dave
Middleton of Commodore Software Engineering for their programming assistance and
expertise.

We also want to recognize the contributions of Frank Palaia of Commodore Hardware
Design, who provided expertise in the operation of the Z80 hardware, and of Dave
DiOrio of Commodore Integrated Circuit Design, who provided insight into the design
of the Memory Management Unit and the C128 VIC chip enhancements.

For their extensive technical reviews of the manuscript, we wish to thank Bob Albright,
Pete Bowman, Steve Lam and Tony Porrazza of Commodore Engineering. We also
thank Dan Baker, Dave Street and Carolyn Scheppner of Commodore Software Techni-
cal Support for providing an always available source of technical assistance. In addition,
we want to acknowledge the valuable contributions of members of Commodore Soft-
ware Quality Assurance, especially Mike Colligon, Karen Mackenzie, Pat McAllister,
Greg Rapp, Dave Resavy, and Stacy English.

We also thank Carol Sullivan and Donald Bein for carefully proofreading various
sections of the text, Michelle Dreisbach for typing the manuscript, Marion Dooley for
preparing the art, Jo-Ellen Temple for the cover design, and Nancy Zwack for overall
coordination assistance.

Finally, we would like to acknowledge the unflagging support and guidance provided by
senior Commodore executives Paul Goheen, Harry McCabe and Bob Kenney.

INTRODUCTION

The Commodore 128 Personal Computer is a versatile, multimode computer. The
Commodore 128 is the successor to the commercially successful Commodore 64 com-
puter. The principal features of the Commodore 128 are:

128K bytes of RAM, optionally expandable to 256K or 640K
80-column horizontal screen display

Hardware and software compatibility with Commodore 64
CP/M 3.0 operation

Enhanced BASIC language

As this Guide shows, the Commodore 128 has many other new or expanded
capabilities and features. Those listed above, however, are the most significant when
assessing the Commodore 128’s capabilities against those of the Commodore 64 and
other microcomputers.

The Commodore 128 is actually three computers in one, with the following three
primary operating modes:

#8 (128 Mode
B C64 Mode
@ CP/M Mode

Two of these primary modes (C128 and CP/M) can operate using either a 40- or
80-column screen display. Following is a summary of the major features of each of the
three primary operating modes.

C128 MODE

In C128 Mode, the Commodore 128 Personal Computer provides the capabilities and
memory needed to run sophisticated applications, such as word processing, spreadsheets,
and database programs.

C128 Mode features include:

B 8502 processor running at 1.02 or 2.04 MHz

B New, enhanced C128 Kernal

® Built-in machine language monitor

® Commodore BASIC 7.0 language, with over 140 commands and functions

B Special new BASIC 7.0 commands that provide better, quicker and easier ways
to create complex graphics, animation, sound and music programs

8 40-column text and bit map screen output using VIC II chip

B 80-column text screen output using 8563 chip

INTRODUCTION

NOTE: The 40- and 80-column screen displays can be used either singly
or simultaneously with two monitors.

® Sound (three voices) using SID chip

® A 92-key keyboard that includes a full numeric keypad and ESCAPE, TAB,
ALT, CAPS LOCK, HELP, LINE FEED, 40/80 DISPLAY, and NO SCROLL
keys

B Access to the full capabilities of the new peripheral devices from Commodore
(1571 fast disk drive, 1902 dual 40/80-column RGBI monitor, etc.)

B Access to all standard Commodore serial peripherals

B RAM expansion to 256 or 640K with optional RAM expansion modules

Cé4 MODE

In C64 Mode, the Commodore 128 retains all the capabilities of the Commodore 64,
thus allowing you to use the wide range of available Commodore 64 software.
C64 Mode features include:

8502 processor running at 1.02 MHz

Standard C64 Kernal

BASIC 2.0 language

64K of RAM

40-column output using VIC II chip

Sound (three voices) using SID chip

Standard Commodore 64 keyboard layout except for function keys

All standard Commodore 64 keyboard functions

Access to all Commodore 64 graphics, color and sound capabilities, used
as on a Commodore 64

Compatibility with standard Commodore 64 peripherals, including user port and
serial devices, Datassette, joysticks, composite video monitors, and RF
(TV) output devices

NOTE: The 1571 disk drive will function in C64 Mode, but only
at standard 1541 speed. C64 compatibility requirements make it impossi-
ble for the 1571 to operate in C64 Mode at fast speed.

CP/M MODE

In CP/M Mode, an onboard Z80 microprocessor gives you access to the capabilities of
Digital Research’s CP/M Version 3.0, plus a number of new capabilities added by Commodore.
CP/M Mode features include:

Integral Z80 processor running at 2.04 MHz

Disk-based CP/M 3.0 System

128K bytes of RAM (in 64K banks)

40-column screen output using VIC II chip

80-column screen output using 8563 chip

Access to the full keyboard, including the numeric keypad and special keys
Access to the new fast serial disk drive (1571) and the standard serial peripherals
Ability to redefine almost any key

Ability to emulate several terminals (Lear-Siegler ADM31, ADM3A)
Support for various MFM disk formats (IBM, Kaypro, Epson, Osborne)
RAM expansion to 256 or 640K RAM with optional RAM expansion modules

The incorporation of CP/M 3.0 (also called CP/M Plus) into the Commodore 128
makes thousands of popular commercial and public domain software programs available
to the user.

HARDWARE COMPONENTS

The Commodore 128 Personal Computer incorporates the following major hardware
components:

PROCESSORS

8502: Main processor in C128, C64 Modes; /O support for CP/M; 6502 software-
compatible; runs at 1.02 or 2.04 MHz
Z80: CP/M Mode only; runs at 2.04 MHz

MEMORY

ROM: 64K standard (C64 Kernal plus BASIC; C128 Kernal plus BASIC, character
ROMs and CP/M BIOS); one 32K slot available for software
RAM: 128K in two 64K banks; 16K display RAM for 8563 video chip; 2K X 4 Color RAM

VIDEO

8564: 40-column video (separate versions for NTSC and PAL TV standards)
8563: 80-column video

INTRODUCTION

SOUND

6581: SID Chip

INPUT/OUTPUT

6526: Joystick ports/keyboard scan/cassette
6526: User and serial ports

MEMORY MANAGEMENT

8921: PLA (C64 plus C128 mapping modes)
8922: MMU (Custom gate array)

For details on these and other hardware components see Chapter 16, Commodore
128 Hardware Specifications.

COMPATIBILITY WITH
COMMODORE 64

The Commodore 128 system is designed as an upgrade to the Commodore 64. Accord-
ingly, one of the major features of the Commodore 128 design is hardware and software
compatibility with the Commodore 64 when operating in C64 Mode. This means that in
C64 Mode the Commodore 128 is capable of running Commodore 64 application
software. Also, the Commodore 128 in C64 Mode supports Commodore 64 peripherals
except the CP/M 2.2 cartridge. (NOTE: The Commodore 128’s built-in CP/M 3.0
capability supersedes that. provided by the external cartridge. This cartridge should not
be used with the Commodore 128 in any mode.)

The C128 Mode is designed as a compatible superset to the C64. Specifically, all
Kernal functions provided by the Commodore 64 are provided in the C128 Kernal.
These functions are also provided at the same locations in the jump table of the C128
Kernal to provide compatibility with existing programs. Zero page and other system
variables are maintained at the same addresses they occupy in C64 Mode. This simpli-
fies interfacing for many programs.

Providing Commodore 64 compatibility means that the new features of the Com-
modore 128 cannot be accessed in C64 Mode. For example, compatibility and memory
constraints preclude modifying the C64 Mode Kernal to support the 1571 fast serial disk
drive. As noted previously, C64 Mode sees this drive as a standard serial disk drive. For
the same reason, C64 Mode does not have an 80-column screen editor, and C64 Mode
BASIC 2.0 cannot use the second 64K bank of memory.

SWITCHING FROM MODE TO MODE

As mentioned before, in the C128 and CP/M Modes the Commodore 128 can provide
both 40-column and 80-column screen displays. This means that the Commodore 128
actually has five operating modes, as follows:

C128 Mode with 80-column display
C128 Mode with 40-column display
C64 Mode (40-column display only)
CP/M Mode with 80-column display
CP/M Mode with 40-column display

Figure 1-1 summarizes the methods used to switch from mode to mode.

FROM
TO
OFF C128 C128 Co4 CP/M CPM
40 COL 80 COL 40 COL 80 COL
Cl28 1. Check that I. Press ESC 1. Check that 1. Check that 1. Check that
40 COL 40/80 key key; 40/80 key 40/80 key 40/80 key
is UP. release. is UP. is UP. is UP.

2. Make sure 2. Press X 2. Turn com- 2. Tum com- 2. Turn com-
that: key. puter OFF, puter OFF, puter OFF,
a)No CP/M OR then ON. then ON. then ON.

system 1. Check that 3. Remove

disk is 40/80 key cartridge

in drive is UP. if present
b)No C64 2. Press

cartridge RESET

is in ex- button.

pansion

port

3. Tum com-
puter ON.

Cl2s 1. Press . Press 1. Press 1. Press 1. Check that
80 COL 40/80 key ESC key; 40/80 key 40780 key 40/80 key
DOWN. release. DOWN. DOWN. is DOWN.
2. Turn com- 2. Press X 2. Turn com- 2. Remove 2. Remove
puter ON. key. puter OFF, CP/M sys- CP/M sys-
OR then ON. tem disk tem disk
. Press 3. Remove from from
40/80 key cartridge drive, if drive, if
DOWN. if present. necessary. necessary.
. Press 3. Turn com- 3. Turn com-
RESET puter OFF, puter OFF,
button. then ON. then ON.

Figure I-1. Commodore 128 Mode Switching Chart

INTRODUCTION

FROM
TO
OFF C128 C128 C64 CP/M CP/M
40 COL 80 COL 40 COL 80 COL
Cé4 1. Hold 1. Type GO 1. Type GO 1. Turn com- 1. Turn com-
€k key 64; press 64; press puter OFF. puter OFF.
DOWN. RETURN. RETURN. 2. Check that 2. Check that
2. Turn com- 2. The com- 2. The com- 40/80 key 40/80 key
puter ON. puter re- puter re- is UP. is UP.
OR sponds: sponds: 3. Hold 3. Hold
1. Insert Co4 ARE YOU ARE YOU DOWN DOWN
cartridge. SURE? SURE? C key C key
2. Tumn com- Type Y; Type Y; while while turn-
puter ON. press press turning ing com-
RETURN. RETURN. computer puter ON.
ON. OR
OR 1. Turn com-
1. Turn com- puter OFF.
puter OFF. 2. Insert C64
2. Insert C64 cartridge.
cartridge. 3. Tum
3. Tum power
power ON. ON.
CcP/M 1. Tundisk 1. Turn disk 1. Tum disk 1. Check that 1. Insert
40 COL drive ON. drive ON. drive ON. 40/80 key CP/M util-
2. Insert 2. Insert 2. Insert is UP. ities disk
CP/M sys- CP/M sys- CP/M sys- 2. Turn disk in drive.
tem disk tem disk tem disk drive ON. 2. At screen
in drive. in drive. in drive. 3. Insert prompt,
3. Check that 3. Check that 3. Check that CP/M sys- A> type:
40/80 key 40/80 key 40/80 key tem disk DEVICE
is UP. is UP. is UP. in drive. CONOUT: =
4. Tumn com- 4. Type: 4. Type: 4. Turn com- 40 COL
puter ON. BOOT BOOT puter OFF. 3. Press
5. Press 5. Press RETURN.
RETURN. RETURN.
CP/M 1. Turn disk 1. Tumm disk 1. Tumn disk 1. Press 1. Insert
80 COL drive ON. drive ON. drive ON. 40/80 key CP/M util-
2. Insert 2. Insert 2. Insert DOWN. ities disk
CP/M sys- CP/M sys- CP/M sys- 2. Turn disk in drive.
tem disk tem disk tem disk drive ON. 2. At screen
in drive. in drive. in drive. 3. Insert prompt,
3. Press 3. Press 3. Check that CP/M sys- A> type:
 40/80 key 40/80 key 40/80 key tem disk DEVICE
DOWN. DOWN. is DOWN. in drive. CONOUT =
4. Turm com- 4. Type: 4. Type: 4. Turn com- 80 COL
puter ON. BOOT BOOT. puter OFF. 3. Press
5. Press 5. Press RETURN.
RETURN. RETURN.

Figure I-1. Commodore

128 Mode Switching Chart (continued)

NOTE: If you are using a Commodore 1902 dual monitor, remember to
move the video switch on the monitor from COMPOSITE or SEPA-
RATED to RGBI when switching from 40-column to 80-column display;
reverse this step when switching from 80 to 40 columns. Also, when
switching between modes remove any cartridges from the expansion port.
You may also have to remove any disk (e.g., CP/M) from the disk drive.

CP/M 3.0 SYSTEM RELEASES

When you send in your C128 warranty card, your name will be added to a list
which makes you eligible for CP/M system release dates.

HOW TO USE THIS GUIDE

This guide is designed to be a reference tool that you can consult whenever you need
detailed technical information on the structure and operation of the Commodore 128
Personal Computer. Since many of the design features of the Commodore 128 can be
viewed from various aspects, it may be necessary to consult several different chapters to
find the information you want. Note that certain groups of chapters form logical sequences
that cover in detail an extended topic like BASIC, graphics, or machine language.

The following chapter summaries should help you pinpoint what chapter or
chapters are most likely to provide the answer to a specific question or problem.

CHAPTER 2. BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA—
Defines and describes the structural and operational components of the BASIC
language, including constants, variables and arrays, and numeric and string ex-
pressions and operations.

CHAPTER 3. ONE STEP BEYOND SIMPLE BASIC—Provides routines (menu,
keyboard buffer, loading, programming function keys) and techniques (‘‘crunch-
ing”’ or saving memory; debugging and merging programs; relocating BASIC)
that can be incorporated in your own programs. Provides modem-related informa-
tion (how to generate TouchTone® frequencies, how to detect telephone ringing,
etc.) plus technical specifications for Commodore Modem/1200 and Modem/300.

CHAPTER 4. COMMODORE 128 GRAPHICS PROGRAMMING—Describes the
general BASIC 7.0 graphics commands (COLOR, GRAPHIC, DRAW, LO-
CATE, BOX, CIRCLE, PAINT) and gives annotated examples of use, including
programs. Describes the structure and general function of the color modes and

character and bit map graphics modes that are fundamental to Commodore 128
graphics.

INTRODUCTION

CHAPTER 5. MACHINE LANGUAGE ON THE COMMODORE 128—Defines,
with examples, machine language (ML) and associated topics, including the
Kernal; the 83502 registers, binary and hexadecimal numbers, and addressing
modes. Defines, with examples, types of ML instructions (op codes, etc.).
Includes 8502 instruction and addressing table.

CHAPTER 6. HOW TO ENTER MACHINE LANGUAGE PROGRAMS INTO THE
COMMODORE 128-Describes, with examples, how to enter ML programs by
using the built-in Machine Language Monitor or by POKEing decimal op-code
values with a BASIC program. Defines, with examples, the ML Monitor commands.

CHAPTER 7. MIXING MACHINE LANGUAGE AND BASIC—Describes, with
examples, how to combine BASIC and ML instructions in the same program by
using BASIC READ, DATA, POKE and SYS commands. Shows where to place
ML programs in memory.

CHAPTER 8. THE POWER BEHIND COMMODORE 128 GRAPHICS—Describes
the C128 Mode memory banking concept and tells how to manage banked
memory. Defines the use of shadow registers. Describes how screen, color and
character memory are handled in BASIC and machine language, for both character
and bit map modes. Shows how to redefine the character set. Describes use of
split-screen modes. Includes a tabular graphics programming summary.

CHAPTER 9. SPRITES—Describes programming of sprites or MOBs (movable object
blocks). Defines and shows how to use the BASIC 7.0 sprite-related commands
(SPRITE, SPRDEF, MOVSPR, SSHAPE, GSHAPE, SPRSAYV). Provides anno-
tated examples of use, including programs.

CHAPTER 10. PROGRAMMING THE 80-COLUMN (8563) CHIP—Defines the
8563 registers and describes, with machine language examples, how to program
the 80-column screen in character and bit map modes.

CHAPTER |l. SOUND AND MUSIC ON THE COMMODORE 128—Defines the
BASIC 7.0 sound and music commands (SOUND, ENVELOPE, VOL, TEMPO,
PLAY, FILTER). Describes how to code a song in C128 Mode. Defines in detail
the Sound Interface Device (SID) and how to program it in machine language.

CHAPTER 12. INPUT/OUTPUT GUIDE—Describes software control of peripheral
devices connected through /O ports, including disk drives, printers, other User
Port and Serial Port devices, the Datassette, and Controller Port devices. Provides
pin-out diagrams and pin descriptions for all ports.

CHAPTER 13. THE COMMODORE 128 OPERATING SYSTEM—Describes, with
examples, the operating system (Kernal), which controls the functioning of the
Commodore 128; includes the Kernal Jump Table, which lists the ROM entry
points used to call the Kernal routines; defines each Kernal routine; defines the
C128 Screen Editor. Describes the Memory Management Unit (MMU), defines
the MMU registers, tells how to select and switch banks in BASIC and ML, and
tells how to predefine memory configurations.

CHAPTER 14. CP/M 3.0 ON THE COMMODORE 128—Summarizes the Commo-
dore version of CP/M 3.0. Defines the general system layout and the operating
system components (CCP, BIOS and BDOS). Describes the Commodore enhance-
ments to CP/M 3.0. (Additional details on CP/M 3.0 are given in Appendix K.)

CHAPTER 15. COMMODORE 128 AND COMMODORE 64 MEMORY MAPS—
Provides detailed memory maps for C128 and C64 modes. (The Z80 memory
map is shown in Appendix K.)

CHAPTER 16. HARDWARE SPECIFICATIONS—Includes technical specifications for
Commodore 128 hardware components (8563, 8564, etc.).

APPENDIXES A through L—Provide additional technical information and/or a more
convenient grouping of information supplied elsewhere in the Guide (e.g., pinout
diagrams).

GLOSSARY—Provides standard definitions of technical terms.

2

BASIC
BUILDING
BLOCKS AND
BASIC 7.0
ENCYCLOPEDIA

The BASIC language is composed of commands, operators, constants, variables, arrays
and strings. Commands are instructions that the computer follows to perform an
operation. The other elements of BASIC perform a variety of functions, such as
assigning values to a quantity, passing values to the computer, or directing the computer
to perform a mathematical operation. This section describes the structure and functions
of the elements of the BASIC language.

COMMANDS AND STATEMENTS

By definition, commands and statements have the following distinctions. A command is
a BASIC verb which is used in immediate mode. It is not preceded by a program line
number and it executes immediately after the RETURN key is pressed. A statement is
a BASIC verb which is contained within a program and is preceded by a line number.
Program statements are executed with the RUN command followed by the RETURN key.

Most commands can be used within a program. In this case the command is
preceded by a line number and is said to be used in program mode. Many commands
also can be used outside a program in what is called direct mode. For example, LOAD
is an often-used direct mode command, but you can also include LOAD in a program.
GET and INPUT are commands that only can be used in a program; otherwise, an
ILLEGAL DIRECT ERROR occurs. While PRINT is usually included within a
program, you can also use PRINT in direct mode to output a message or numeric value
to the screen, as in the following example:

PRINT ““The Commodore 128 RETURN

Notice that the message is displayed on the screen as soon as you press the return
key. The following two lines display the same message on the screen. The first line is a
program mode statement; the second line is a direct mode command.

10 PRINT *‘The Commodore 128 RETURN
RUN RETURN

It is important to know about the concepts behind memory storage before examin-
ing the Commodore BASIC language in detail. Specifically, you need to understand
constants, variables and arrays.

NUMERIC MEMORY STORAGE:
CONSTANTS, VARIABLES AND ARRAYS

There are three ways to store numeric information in Commodore BASIC. The first way
is to use a constant. A constant is a form of memory storage in which the contents
remain the same throughout the course of a program. The second type of memory
storage unit is a variable. As the name indicates, a variable is a memory storage cell in

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

which the contents vary or change throughout the course of a program. The last way to store
information is to use an array, a series of related memory locations consisting of variables.

Each of these three units of memory storage can have three different types of
information or data assigned. The three data types are INTEGER, FLOATING-POINT
or STRING. Integer data is numeric, whole number data—that is, numbers without
decimal points. Floating-point is numeric data including fractional parts indicated with a
decimal point. String data is a sequential series of alphanumeric letters, numbers and
symbols referred to as character strings. The following paragraphs describe these three
data types and the way each memory storage unit is assigned different data type values.

CONSTANTS: INTEGER,
FLOATING-POINT AND STRING

INTEGER CONSTANTS

The value assigned to a constant remains unchanged or constant throughout a program.
Integer constants can contain a positive or negative value ranging from -32768 through
+32767. If the plus sign is omitted, the C128 assumes that the integer is positive.
Integer constants do not contain commas or decimal points between digits. Leading
zeros are ignored. Integers are stored in memory as two-byte binary numbers, which
means a constant requires 16 bits or two bytes of memory to store the integer as a base
two number. The following are examples of integer constants:

I

1000
=32

0
~32767

FLOATING-POINT CONSTANTS

Floating-point constants contain fractional parts that are indicated by a decimal
point. They do not contain commas to separate digits. Floating-point constants may be
positive or negative. If the plus sign is omitted, it is assumed that the number is
positive. Again, leading zeros are unnecessary and ignored. Floating-point constants are
represented in two ways depending on their value:

I. Simple Number Notation
2. Scientific Notation

In simple number notation, the floating-point number is calculated to ten digits of
precision and stored using five bytes, but only nine digits are displayed on the screen or
printer. If the floating-point number is greater than nine digits, it is rounded according to
the tenth digit. If the tenth digit is greater than five, the ninth digit is rounded to the next
higher digit. If the tenth digit is less than five, the ninth digit is rounded to the next
lower digit. The rounding of floating-point numbers may become a factor when calculat-

ing values based upon floating-point numbers greater than nine digits. Your program
should test floating-point results and take them into consideration when basing these
values on future calculations.

As mentioned, floating-point numbers are displayed as nine digits. If the value of a
floating-point constant is less than .01 or greater than 999999999, the number is
displayed on the screen or printer in scientific notation. For example, the number
12345678901 is displayed as 1.23456789E + 10. Otherwise, the simple number notation
is displayed. A floating-point constant in scientific notation appears in three parts:

1. The mantissa is the leftmost number separated by a decimal point.

2. The letter E indicates that the number is displayed in exponential (scientific)
notation.

3. The exponent specifies the power of ten to which the number is raised and the
number of places the decimal point is moved in order to represent the number
in simple number notation.

The mantissa and exponent can be positive or negative. The exponent can be
within the range -39 to +38. If the exponent is negative, the decimal point moves to
the left representing it as a simple number. If the exponent is positive, the decimal
point moves to the right representing it in simple number notation.

The Commodore 128 limits the size of floating-point numbers. The highest
number you can represent in scientific notation is 1.70141183E+38. If you try to
represent a number larger than that, an OVERFLOW ERROR occurs. The smallest
number you can represent in scientific notation is 2.93873588E-39. If you try to
represent a number smaller than that, no error occurs but a zero is returned as the value.
You should therefore test floating-point values in your programs if your calculations are
based on very small numbers and the results depend on future calculations. Here are
examples of floating-point constants in simple number notation and others in scientific
notation:

SIMPLE NUMBER SCIENTIFIC
9.99 22.33E+20
0234 99999.234E-23
+10.01 —45.89E~-11
-90.23 -3.14E+17

NOTE: The values in either column are not equivalent.

STRING CONSTANTS

A string constant, as mentioned, is a sequential series of alphanumeric characters
(numbers, letters and symbols). A string constant can be as long as a 160-character input

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

line, minus the line number and any other information appearing on that program line.
By concatenating strings together, you may form a string as long as 255 characters. The
string may contain numbers, letters, and even decimal points and commas. However,
the string cannot contain the double quote (**) character, since this character delimits or
marks the beginning or ending of the string. You can represent a double quote character
within a string using CHR$(34). You can omit the closing double quote character of a
string if it is the last statement in a line of a program.

A string can even be assigned a null value, meaning no characters are actually
assigned to it. Assign a string a null value by omitting characters between the double
quotes and follow the opening double quote directly with a closing double quote. Here
are some examples of string constants:

“*Commodore 128"’
“qwerl 234! #5%()*.:,”
" (null string)

““John and Joan™

VARIABLES: INTEGER,
FLOATING-POINT AND STRING

Variables are units of memory storage that represent varying data values within a
program. Unlike constants, variables may change in value throughout the course of a
program. The value assigned to a variable can be an integer, a floating-point number, or
a string. You can assign a value to a variable as the result of a mathematical calculation.
Variables are assigned values using an equals sign. The variable name appears to the left
of the equals sign and the constant or calculation appears to the right. When you refer to
a variable in a program before you assign it a value, the variable value becomes zero if
it is an integer or floating-point number. It becomes a null string if the variable is a
string.

Variable names can be any length, but for efficiency you should limit the size
of the variable to a few characters. Only the first two characters of a variable name
are significant. Therefore, do not begin the names of two different variables with
the same two characters. If you do, the C128 will interpret them as the same variable
name.

The first character of a variable name must be a letter. The rest of the
variable name can be any letter or number from zero to nine. A variable name
must not contain any BASIC keyword. If you include a BASIC keyword in
a variable name, a SYNTAX ERROR occurs. BASIC keywords include all
BASIC statements, commands, function names, logical operator names and reserved
variables.

You can specify the data type of a variable by following the variable name with
a percent sign (%) if the variable is an integer value, or a dollar sign if the
variable is a string. If no character is specified, the C128 assumes that the variable
value is a floating-point number. Here are some examples of variables and how they are
assigned:

A = 3.679 (floating-point)
Z% = 714 (integer)

F$ = *“CELEBRATE THE COMMODORE 128"’ (string)
T = A + Z% (floating-point)
Count % = Count % + 1 (integer)
G$ = “*SEEK A HIGHER LEVEL OF CONSCIOUSNESS"’ (string)

H$ = F$ + GS$ (string)

ARRAYS: INTEGER,
FLOATING-POINT AND STRING

Although arrays were defined earlier in this chapter as series of related variables or
constants, you refer to them with a single integer, floating point or string variable name.
All elements have the same data type as the array name. To access successive elements
within the array, BASIC uses subscripts (indexed variables) to refer to each unique storage
compartment in the array. For example, the alphabet has twenty-six letters. Assume an
array called “*ALPHA’’ is constructed and includes all the letters of the alphabet. To
access the first element of the array, which is also the first letter of the alphabet (A),
label Alpha with a subscript of zero:

ALPHAS$(0) A

To access the letter B, label Alpha with a subscript of one:
ALPHAS$(1) B

Continue in the same manner to access all of the elements of the array ALPHA, as in
the following:

ALPHAS$(2) C
ALPHAS(3) D
ALPHAS(4) E
ALPHAS(5) zZ

Subscripts are a convenient way to access elements within an array. If subscripts
did not exist, you would have to assign separate variables for all the data that would
normally be accessed with a subscript. The first subscript within an array is zero.

Although arrays are actually stored sequentially in memory, they can be multi-
dimensional. Tables and matrices are easily manipulated with two-dimensional arrays.
For example, assume you have a matrix with ten rows and ten columns. You need 100
storage locations or array elements in order to store the whole matrix. Even though
your matrix is ten by ten, the elements in the array are stored in memory one
after the other for 100 hundred locations.

You specify the number of dimensions in the arrays with the DIM statement. For
example:

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

10 DIM A(99)

dimensions a one-dimensional floating-point array with 100 elements. The following are
examples of two-, three- and four-dimensional integer arrays:

20 DIM B(9, 9) (100 elements)
30 DIM C(20,20,20) (9261 elements)
40 DIM D(10,15,15,10) (30976 elements)

In theory the maximum number of dimensions in an array is 255, but you cannot
fit a DIMension statement that long on a 160-character line. The maximum number of
DIMension statements you can fit on a 160-character line is approximately fifty. The
maximum number of elements allowed in each dimension is 32767. In practice, the size
of an array is limited to the amount of available memory. Most arrays are one-, two- or
three-dimensional. If an array contains fewer than ten elements, there is no need for a
DIM statement since the C128 automatically dimensions variable names to ten elements.
The first time you refer to the name of the undimensioned array (variable) name, the
C128 assigns zero to the value if it is a numeric array, or a null string if it is a string
array.

You must separate the subscript for each dimension in your DIMension statement
with a comma. Subscripts can be integer constants, variables, or the integer result of an
arithmetic operation. Legal subscript values can be between zero and the highest
dimension assigned in the DIMension statement. If the subscript is referred to outside of
this range, a BAD SUBSCRIPT ERROR results.

The type of array determines how much memory is used to store the integer,
tloating-point or string data.

Floating-point string arrays take up the most memory; integer arrays require the
least amount of memory. Here’s how much memory each type of array requires:

5 bytes for the array name
+ 2 bytes for each dimension
+ 2 bytes for each integer array element
OR + 5 bytes for each floating-point element
OR + 3 bytes for each string element
AND + 1 byte per character in each string element

Keep in mind the amount of storage required for each type of array. If you only
need an integer array, specify that the array be the integer type, since floating-point

arrays require much more memory than does the integer type.

Here are some example arrays:

A$(0)=“"GROSS SALES” (string array)
MTHS$(K%)=‘JAN"” (string array)
G2%(X)=5 (integer array)

CNT%(G2%(X)) =CNT%(1)-2 (integer array)
FP(12*K%)=124.8 (floating-point array)

SUM(CNT%(1)) =FP*K% (floating-point array)

A(5)=0 Sets the 5th element in the 1 dimensional array
called A’ equal to 0

B(5,6)=26 Sets the element in row position 5 and column
position 6 in the 2 dimensional array called *‘B”’
equal to 26

C(1,2,3)=100 Sets the element in row position 1, column

position 2, and depth position 3 in the 3 dimen-
sional array called **C”” equal to 100

EXPRESSIONS AND OPERATORS

Expressions are formed using constants, variables and/or arrays. An expression can be a
single constant, simple variable, or an array variable of any type. It also can be a
combination of constants and variables with arithmetic, relational or logical operators
designed to produce a single value. How operators work is explained below. Expres-
sions can be separated into two classes:

1. ARITHMETIC
2. STRING

Expressions have two or more data items called operands. Each operand is
separated by a single operator to produce the desired result. This is usually done by
assigning the value of the expression to a variable name.

An operator is a special symbol the BASIC Interpreter in your Commodore 128
recognizes as representing an operation to be performed on the variables or constant
data. One or more operators, combined with one or more variables and/or constants
form an expression. Arithmetic, relational and logical operators are recognized by
Commodore 128 BASIC.

ARITHMETIC EXPRESSIONS

Arithmetic expressions yield an integer or floating-point value. The arithmetic operators
(+.—%/,T) are used to perform addition, subtraction, multiplication, division and
exponentiation operations, respectively.

ARITHMETIC OPERATIONS

An arithmetic operator defines an arithmetic operation which is performed on the two
operands on either side of the operator. Arithmetic operations are performed using
floating-point numbers. Integers are converted to floating-point numbers before an
arithmetic operation is performed. The result is converted back to an integer if it is
assigned to an integer variable name.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

ADDITION (+)

The plus sign (+) specifies that the operand on the right is added to the operand on the
left.

EXAMPLES:

2+2
A+B+C
X% + 1

BR + 10E-2

SUBTRACTION (-)

The minus sign (-) specifies that the operand on the right is subtracted from the operand
on the left.

EXAMPLES:

4-1
10064
A-B
55-142

The minus also can be used as a unary minus which is the minus sign in front of a
negative number. This is equal to subtracting the number from zero (0).

EXAMPLES:

-5

~9E4

-B

4—(-2) (same as 4 +2)

MULTIPLICATION (*)
An asterisk (*) specifies that the operand on the left is multiplied by the operand on the
right.

EXAMPLES:

100*2
50%0
A*X1
R%*14

DIVISION (/)
The slash (/) specifies that the operand on the left is divided by the operand on the

right.

EXAMPLES:

10/2
6400/4
A/B
4E2/XR

EXPONENTIATION (1)

The up arrow (1) specifies that the operand on the left is raised to the power specified
by the operand on the right (the exponent). If the operand on the right is a 2, the number
on the left is squared; if the exponent is a 3, the number on the left is cubed, etc. The
exponent can be any number as long as the result of the operation gives a valid
floating-point number.

EXAMPLES:

212 Equivalent to 2%2

373 Equivalent to 3%3*3

414 Equivalent to 4*4*4*4
AB 1 CD

31 -2 Equivalent to V5%V

RELATIONAL OPERATORS

The relational operators (<,=,>,<=>= <>) are primarily used to compare the
values of two operands, but they also produce an arithmetic result. The relational
operators and the logical operators (AND, OR, and NOT), when used in comparisons,
produce an arithmetic true/false evaluation of an expression. If the relationship stated in
the expression is true, the result is assigned an integer value of —1. If it’s false a value of
0 is assigned. Following are the relational operators:

< LESS THAN

= EQUAL TO

> GREATER THAN

<= LESS THAN OR EQUAL TO

>= GREATER THAN OR EQUAL TO
<> NOT EQUAL TO

EXAMPLES:

5-4=1 result true (1)
14>66 result false (0)
15> =15 result true (-=1)

Relational operators may be used to compare strings. For comparison purposes,
the letters of the alphabet have the order A<B<C<D, etc. Strings are compared by

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 21

evaluating the relationship between corresponding characters from left to right (see
string operations).

EXAMPLES:

C“A” <UBY result true (—1)
X7 =YY result false (0)
BB <> CCS$ result false (0) if they are the same

Numeric data items can only be compared (or assigned) with other numeric items.
The same is true when comparing strings; otherwise, the BASIC error message ?TYPE
MISMATCH occurs. Numeric operands are compared by first converting the values of
either or both operands from integer to floating-point form, as necessary. Then
the relationship between the floating-point values is evaluated to give a true/false
result.

At the end of all comparisons, you get an integer regardless of the data type
of the operand (even if both are strings). Because of this, a comparison of two
operands can be used as an operand in performing calculations. The result will
be —1 or 0 and can be used as anything but a divisor, since division by zero is
illegal.

LOGICAL OPERATORS

The logical operators (AND, OR, NOT) can be used to modify the meaning of the
relational operators or to produce an arithmetic result. Logical operators can produce
results other than —1 and 0, although any nonzero result is considered true when testing
for a true/false condition.

The logical operators (sometimes called Boolean operators) also can be used to
perform logical operations on individual binary digits (bits) in two operands. But when
you're using the NOT operator, the operation is performed only on the single operand to
the right. The operands must be in the integer range of values (32768 to +32767)
(floating-point numbers are converted to integers) and logical operations give an integer
result.

Logical operations are performed bit-by-corresponding-bit on the two operands.
The logical AND produces a bit result of 1 only if both operand bits are 1. The logical
OR produces a bit result of 1 if either operand bit is 1. The logical NOT is the opposite
value of each bit as a single operand. In other words, “‘If it’s NOT 1 then it is 0. If it's
NOT O then itis 1.

The exclusive OR IF (XOR) doesn’t have a logical operator but it is performed as
part of the WAIT statement or as the XOR function. Exclusive-OR means that if the
bits of two operands are set and equal, then the result is 0; otherwise the result is 1.

Logical operations are defined by groups of statements which, when taken to-
gether, constitute a Boolean ‘‘truth table™” as shown in Table 2-1.

The AND operation results in a 1 only if both bits are 1:
1AND 1=1
0 AND 1=0
1AND 0=0
0 AND 0=0

The OR operation results in a 1 if either bit is 1:
10R1=1
O0OR1=1
10R 0=1
0OR 0=0

The NOT operation logically complements each bit:
NOT 1=0
NOT 0=1

The exclusive OR (XOR) is a function (not a logical operator):
1XOR 1=0
1XOR 0=1
0XOR 1=1
0 XOR 0=0

Table 2-1 Boolean Truth Table

The logical operators AND, OR and NOT specify a Boolean arithmetic operation
to be performed on the two operand expressions on either side of the operator. In the
case of NOT, only the operand on the right is considered. Logical operations (or
Boolean arithmetic) aren’t performed until all arithmetic and relational operations in an
expression have been evaluated.

EXAMPLES:

IF A=100 AND B=100 THEN 10 (if both A and B have a value of 100 then
the result is true)

A=96 AND 32: PRINT A (A=32)
IF A=100 OR B=100 THEN 20 (if A or B is 100 then the result is true)
A=64 OR 32: PRINT A (A=96)
X=NOT 96 (result is -97 (two’s complement))

HIERARCHY OF OPERATIONS

All expressions perform the different types of operations according to a fixed hierarchy.
Certain operations have a higher priority and are performed before other operations. The
normal order of operations can be modified by enclosing two or more operands within

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

23

parentheses (), creating a **subexpression.’’ The parts of an expression enclosed in pa-
rentheses will be reduced to a single value before evaluating parts outside the parentheses.

When you use parentheses in expressions, pair them so that you always have an
equal number of left and right parentheses. If you don’t, the BASIC error message
?SYNTAX ERROR will occur.

Exptessions that have operands inside parentheses may themselves be enclosed in
parentheses, forming complex expressions of multiple levels. This is called nesting.
Parentheses can be nested in expressions to a maximum depth of ten levels—ten
matching sets of parentheses. The innermost expression has its operations performed
first. Some examples of expressions are:

A+B

C1(D+E)2

(X-CT (D+EY2)*10)+1
GG$>HHS$

1J$ + <“MORE”

K% =1 AND M<>X

K% =2 OR (A=B AND M<X)
NOT (D=E)

The BASIC Interpreter performs operations on expressions by performing arithme-
tic operations first, then relational operations, and logical operations last. Both arithme-
tic and logical operators have an order of precedence (or hierarchy of operations) within
themselves. Relational operators do not have an order of precedence and will be
performed as the expression is evaluated from left to right.

If all remaining operators in an expression have the same level of precedence, then
operations are performed from left to right. When performing operations on expressions
within parentheses, the normal order of precedence is maintained. The hierarchy of
arithmetic and logical operations is shown in Table 2-2 from first to last in order of
precedence. Note that scientific notation is resolved first.

OPERATOR DESCRIPTION EXAMPLE
1 Exponentiation BASE T EXP
- Negation (Unary Minus) -A
*/ Multiplication AB * CD
Division EF / GH
+ Addition CNT + 2
- Subtraction JK - PQ
> =< Relational Operations A<=B
NOT Logical NOT NOT K%
(Integer Two’s Complement)
AND Logical AND JK AND 128
OR Logical OR PQOR 15

Table 2-2 Hierarchy of Operations Performed on Expressions

STRING OPERATIONS

Strings are compared using the same relational operators (=, <>, <=, >=, <,>)
that are used for comparing numbers. String comparisons are made by taking one
character at a time (left-to-right) from each string and evaluating each character
code position from the character set. If the character codes are the same, the char-
acters are equal. If the character codes differ, the character with the lower CBM ASCIH
code number is lower in the character set. The comparison stops when the end of either
string is reached. All other factors being equal, the shorter string is considered less than
the longer string. Leading or trailing blanks are significant in string evaluations.

Regardless of the data types, all comparisons yield an integer result. This is
true even if both operands are strings. Because of this, a comparison of two string
operands can be used as an operand in performing calculations. The result will
be —1 or O (true or false) and can be used in any mathematical operation but division
since division by zero is illegal.

STRING EXPRESSIONS

Expressions are treated as if an implied **<>0"" follows them. This means that if an
expression is true, the next BASIC statement on the same program line is executed. If
the expression is false, the rest of the line is ignored and the next line in the program is
executed.

Just as with numbers, you can perform operations on string variables. The only
arithmetic string operator recognized by BASIC 7.0 is the plus sign (+) which is used
to perform concatenation of strings. When strings are concatenated, the string on the
right of the plus sign is appended to the string on the left, forming a third string. The
result can be printed immediately, used in a comparison, or assigned to a variable name.
If a string data item is compared with (or set equal to) a numeric item, or vice-versa, the
BASIC error message ?TYPE MISMATCH occurs. Some examples of string expres-
sions and concatenation are:

10 A$=""FILE”: B$="NAME"
20 NAMS$ = A$ + B$ (yields the string ““FILENAME"")
30 RES$ = “NEW” + AS$ + B$ (yields the string "NEWFILENAME’")

ORGANIZATION OF THE
BASIC 7.0 ENCYCLOPEDIA

This section of Chapter 2 lists BASIC 7.0 language elements in an encyclopedia
format. It provides an abbreviated list of the rules (syntax) of Commodore 128
BASIC 7.0, along with a concise description of each. Consult the Commodore 128
System Guide BASIC 7.0 Encyclopedia (Chapter 5) included with your computer for a

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

25

more detailed description of each command. BASIC 7.0 includes all the elements of

BASIC 2.0.

The different types of BASIC operations are listed in individual sections, as

follows:

1. Commands and Statements: the commands used to edit, store and erase
programs, and the BASIC program statements used in the numbered lines of a

program.

2. Functions: the string, numeric and print functions.
3. Reserved Words and Symbols: the words and symbols reserved for

purpose.

use by the BASIC 7.0 language, which cannot be used for any other

COMMAND AND
STATEMENT FORMAT

The command and statement definitions in this encyclopedia are arranged in the follow-

ing format:

Command name—

Brief definition—
Command format—

Discussion of
format and use-—

EXAMPLES:

Example(s)—

AUTO

Enable/disable automatic line numbering
AUTO [line#]

This command turns on the automatic line-numbering feature.
This eases the job of entering programs, by automatically typing
the line numbers for the user. As each program line is entered by
pressing RETURN, the next line number is printed on the screen,
and the cursor is positioned two spaces to the right of the line
number. The line number argument refers to the desired incre-
ment between line numbers. AUTO without an argument turns off
the auto line numbering, as does RUN. This statement can be
used only in direct mode (outside of a program).

AUTO 10 Automatically numbers program lines in incre-
ments of 10.

AUTO 50 Automatically numbers lines in increments of 50.

AUTO Turns off automatic line numbering.

The boldface line that defines the format consists of the following elements:

DLOAD ‘‘program name”’ [,D0,U8]
i 7

keyword argument additional arguments
(possibly optional)

The parts of the command or statement that must be typed exactly as shown are in
capital letters. Words the user supplies, such as the name of a program, are not
capitalized.

When quote marks (** *’) appear (usually around a program name or filename), the
user should include them in the appropriate place, according to the format example.

POERR]

Keywords are words that are part of the BASIC language. They are the central part of a
command or statement, and they tell the computer what kind of action to take.
These words cannot be used as variable names. A complete list of reserved words
and symbols is given at the end of this chapter.

Keywords, also called reserved words, appear in upper-case letters. Key-
words may be typed using the full word or the approved abbreviation. (A full list
of abbreviations is given in Appendix I). The keyword or abbreviation must be
entered correctly or an error will result. The BASIC and DOS error messages are
defined in Appendices A and B, respectively.

Arguments, also called parameters, appear in lower-case letters. Arguments comple-
ment keywords by providing specific information to the command or statement.
For example, the keyword LOAD tells the computer to load a program while the
argument ‘‘program name’’ tells the computer which specific program to load. A
second argument specifies from which drive to load the program. Arguments
include filenames, variables, line numbers, etc.

Square Brackets [] show optional arguments. The user selects any or none of the
arguments listed, depending on requirements.

Angle Brackets <> indicate the user MUST choose one of the arguments listed.

A Vertical Bar | separates items in a list of arguments when the choices are limited to
those arguments listed. When the vertical bar appears in a list enclosed in
SQUARE BRACKETS, the choices are limited to the items in the list, but the
user still has the option not to use any arguments. If a vertical bar appears within
angle brackets, the user MUST choose one of the listed arguments.

Ellipsis . . . (a sequence of three dots) means an option or argument can be repeated more
than once.

Quotation Marks “” enclose character strings, filenames and other expressions.
When arguments are enclosed in quotation marks, the quotation marks must be
included in the command or statement. In this encyclopedia, quotation marks are
not conventions used to describe formats; they are required parts of a command or
statement.

Parentheses () When arguments are enclosed in parentheses, they must be included in
the command or statement. Parentheses are not conventions used to describe
formats; they are required parts of a command or statement.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

27

Variable refers to any valid BASIC variable names, such as X, A$, T%, etc.
Expression refers to any valid BASIC expressions, such as A+B+2,.5%X +3),
etc.

NOTE: For all DOS commands, variables and expressions used as
arguments must be endorsed in parentheses.

BASIC COMMANDS AND
STATEMENTS

APPEND

Append data to the end of a sequential file
APPEND #logical file number,‘‘filename”’[,Ddrive number][<ON|,>Udevice]

EXAMPLES:

Append # 8, “MYFILE"" OPEN logical file 8 called “MYFILE"", and prepare
to append with subsequent PRINT # statements.

Append #7,(A$),D0,U9 OPEN logical file named by the variable in A$ on
drive 0, device number 9, and prepare to APPEND.

AUTO

Enable/disable automatic line numbering

AUTO [line#]

EXAMPLES:

AUTO 10 Automatically numbers program lines in incréments of 10.
AUTO 50 Automatically numbers lines in increments of 50.
AUTO Tums off automatic line numbering.

BACKUP

Copy the entire contents from one disk to another on a dual disk drive

BACKUP source Ddrive number TO destination Ddrive number [<ON|,>
Udevice]

NOTE: This command can be used only with a dual-disk drive.

EXAMPLES:

BACKUP DO TO D1 Copies all files from the disk in drive O to the disk

in drive 1, in dual disk drive unit 8.

BACKUP DO TO D1 ON U9 Copies all files from drive 0 to drive I, in disk

BANK

drive unit 9.

Select one of the 16 BASIC banks (default memory configurations), numbered 015 to
be used during PEEK, POKE, SYS, and WAIT commands.

BANK bank number

Here is a table of available BANK configurations in the Commodore 128 memory:

BANK

<

[+ - B - NV B S S

CONFIGURATION

RAM(0) only

RAM(1) only

RAM(2) only (same as 0)

RAM(3) only (same as 1)

Internal ROM , RAM(0), I/O

Internal ROM , RAM(1), /O

Internal ROM , RAM(2), 1/O (same as 4)
Internal ROM , RAM(3), I/O (same as 5)
External ROM , RAM(0), I/O

External ROM , RAM(1), I/O

External ROM , RAM(2), I/O (same as 8)
External ROM , RAM(3), I/O (same as 9)
Kernal and Internal ROM (LOW), RAM(0), I/O
Kernal and External ROM (LOW), RAM(0), I/O
Kernal and BASIC ROM, RAM(0), Character ROM
Kernal and BASIC ROM, RAM(0), VO

Banks are described in detail in Chapter 8, The Power Behind Commodore 128
Graphics and Chapter 13, The Commodore 128 Operating System.

BEGIN /

BEND

A conditional statement like IF . . . THEN: ELSE, structured so that you can include

several program lines between the start (BEGIN) and end (BEND) of the structure.
Here’s the format:

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

29

IF condition THEN BEGIN : statement
statement
statement BEND : ELSE BEGIN
statement
statement BEND

EXAMPLE

10 IF X = | THEN BEGIN: PRINT ““X = 1 is True”

20 PRINT **So this part of the statement is performed’’

30 PRINT “*When X equals 1

40 BEND: PRINT **End of BEGIN/BEND structure’”:GO to 60

50 PRINT ‘X does not equal 1':PRINT ‘‘The statements between BEGIN/
BEND are skipped”’

60 PRINT *‘Rest of Program”’

BLOAD

Load a binary file starting at the specified memory location

BLOAD “‘filename’’[,Ddrive number]{<<ONI|,U>device number] [,Bbank
number] [,Pstart address]

where:
® filename is the name of your file
B bank number selects one of the 16 BASIC banks (default memory con-
figurations)
B start address is the memory location where loading begins
EXAMPLES:

BLOAD **SPRITES"’, BO, P3584 LOADS the binary file ‘‘SPRITES”
starting in location 3584 (in BANK 0).

BLOAD “DATAI"", DO, U8, B1, P4096 LOADS the binary file ‘‘DATA {”
into location 4096 (BANK 1) from
Drive 0, unit §.

BOOT

Load and execute a program which was saved as a binary file

BOOT ‘‘filename’’[,Ddrive number][<ON|,>Udevice][,Palt LOAD ADD]

EXAMPLE:

BOOT BOOT a bootable disk (CP/M Plus for ex-
ample).

BOOT “*GRAPHICS 1”°, DO, U9 LOADS the binary program ‘‘GRAPHICS 1"’

BOX

from unit 9, drive 0, and executes it.

Draw box at specified position on screen

BOX [color source], X1, Y1[,X2,Y2]{,angle][,paint]

where:

color source

X1,Y1
X2,Y2

angle

paint

EXAMPLES:

0= Background color

1 =Foreground color (DEFAULT)
2 = Multi-color 1

3 = Multi-color 2

Corner coordinate (scaled)

Corner diagonally opposite X1, Y1, (scaled); default is the PC
location.

Rotation in clockwise degrees; default is O degrees

Paint shape with color
0=Do not paint

I = Paint

(default =0)

BOX 1, + 10, + 10 Draw a box 10 pixels to the right and 10 down from

the current pixel cursor location.

BOX 1, 10, 10, 60, 60 Draws the outline of a rectangle.

BOX, 10, 10, 60, 60, 45, 1 Draws a painted, rotated box (a diamond).

BOX , 30, 90, , 45, 1 Draws a filled, rotated polygon.

Any parameter can be omitted but you must include a comma in its place, as in the last

two examples.

NOTE: Wrapping occurs if the degree is greater than 360.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

31

BSAVE

Save a binary file from the specified memory locations

BSAVE ‘‘filename”’[,Ddrive number]{<ONI,U>device number] [,Bbank
number],Pstart address TO Pend address

where:

W start address is the starting address where the program is SAVEd from
® end address is the last address + 1 in memory which is SAVEd

This is similar to the SAVE command in the Machine Language MONITOR.

EXAMPLES:

BSAVE ““SPRITE DATA’’,B0, Saves the binary file named ‘‘SPRITE DATA”,
P3584 TO P4096 starting at location 3584 through 4095 (BANK
0).
BSAVE ““PROGRAM.SCR”’,D0, Saves the binary file named ‘‘PROGRAM.
U9,B0,P3182 TO P7999 SCR” in the memory address range 3182
through 7999 (BANK 0) on drive 0, unit 9.

CATALOG

Display the disk directory
CATALOG [Ddrive number][<ON|,>Udevice number][,wildcard string]

EXAMPLE:
CATALOG Displays the disk directory on drive 0.

CHAR

Display characters at the specified position on the screen
CHAR [color source],X,Y[,string][,RVS]

This is primarily designed to display characters on a bit mapped screen, but it can also
be used on a text screen. Here’s what the parameters mean:

color source 0= Background
| = Foreground

X Character column (0-39) (VIC screen)
(0-79) (8563) screen

Y Character row (0-24)
string String to print

reverse Reverse field flag (0= off, 1 =on)

EXAMPLE:

10 COLOR 2,3: REM MULTI-COLOR | = RED
20 COLOR 3.,7: REM MULTI-COLOR 2 = BLUE
30 GRAPHIC 3.1

30 CHAR 0,10,10, “TEXT”",0

i

CIRCLE

Draw circles, ellipses, arcs, etc., at specified positions on the screen
CIRCLE [color source],X,Y[,Xr][,Yr] [,sall,ea][,angle]{,inc]

where:

color source = background color
tforeground color
multi-color 1
multi-color 2

il

i

0
1
2
3

il

XY Center coordinate of the CIRCLE
Xr X radius (scaled); (default = 0)
Yr Y radius (sealed default is Xr)
sa Starting arc angle (default O degrees)

ea Ending arc angle (default 360 degrees)

angle Rotation is clockwise degrees (default is O degrees)
inc Degrees between segments (default is 2 degrees)
sa
Xy Xxr

yr
ea
EXAMPLES:

CIRCLE]I. 160,100,65,10 Draws an ellipse.
CIRCLEI, 160,100,65,50 Draws a circle.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 33

CIRCLEI, 60,40,20,18,,,,45 Draws an octagon.
CIRCLE!], 260,40,20,,,,,.90 Draws a diamond.
CIRCLEIl, 60,140,20,18,,,,120 Draws a triangle.

CIRCLE 1,+2,+2,50,50 Draws a circle (two pixels down and two to the
right) relative to the original coordinates of the
pixel cursor.

CIRCLEL, 30;90 Draws a circle 30 pixels and 90 degrees to the
right of the current pixel cursor coordinate
position.

You may omit a parameter, but you must still place a comma in the appropriate
position. Omitted parameters take on the default values.

CLOSE

Close logical file

CLOSE file number

EXAMPLE:
CLOSE 2 Logical file 2 is closed.

CLR

Clear program variables

CLR

CMD

Redirect screen output to a logical disk or print file.

CMD logical file number [,write list]

EXAMPLE:
OPEN 1.4 Opens device 4 (printer).
CMD 1| All normal output now goes to the printer.

LIST The LISTing goes to the printer, not the screen—even the word
VVVVVVVVV READY.

PRINT#1 Sends output back to the screen.
CLOSE 1 Closes the file.

COLLECT

Free inaccessible disk space
COLLECT [Ddrive number][<ON|,>Udevice]

EXAMPLE:

COLLECT DO Free all available space which has been incorrectly allocated to
improperly closed files. Such files are indicated with an asterisk
on the disk directory.

COLLISION

Define handling for sprite collision interrupt

COLLISION type [,statement]
type Type of interrupt, as follows:
I = Sprite-to-sprite collision
2 = Sprite-to-display data collision
3 = Light pen (VIC screen only)
statement BASIC line number of a subroutine

Il

il

EXAMPLE:

Collision 1, 5000 Enables a sprite-to-sprite collision and program control sent to
subroutine at line 5000.

Collision 1 Stops interrupt action which was initiated in above example.

Collision 2, 1000 Enables a sprite-to-data collision and program control directed
to subroutine in line 1000.

COLOR

Define colors for each screen area

COLOR source number, color number

This statement assigns a color to one of the seven color areas:

AREA SOURCE

40-column (VIC) background

40-column (VIC) foreground

multicolor 1

multicolor 2

40-column (VIC) border

character color (40- or 80-column screen)
80-column background color

[Y R R S

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

35

Colors that are usable are in the range 1-16.

COLOR CODE COLOR COLOR CODE COLOR

1 Black 9 Orange

2 White 10 Brown

3 Red 11 Light Red

4 Cyan 12 Dark Gray

5 Purple 13 Medium Gray
6 Green 14 Light Green
7 Blue 15 Light Blue

8 Yellow 16 Light Gray

Color Numbers in 40-Column Output

1 Black 9 Dark Purple
2 White 10 Dark Yellow
3 Dark Red 11 Light Red

4 Light Cyan 12 Dark Cyan

5 Light Purple 13 Medium Gray
6 Dark Green 14 Light Green
7 Dark Blue 15 Light Blue

8 Light Yellow 16 Light Gray

Color Numbers in 80-Column Output

EXAMPLES:
COLOR 0, 1: Changes background color of 40-column screen to black.
COLOR 5, 8: Changes character color to yellow.

CONCAT

Concatenate two data files

CONCAT ““file 2’ [,Ddrive number] TO “file 1"’
[,Ddrive number][<ON]|,>Udevice]

EXAMPLE:

Concat “‘File B’’ to “*File A”® FILE B is attached to FILE A, and the combined
file is designated FILE A.

Concat (A$) to (B$), D1, U9 The file named by B$ becomes a new file with
the same name with the file named by A$ at-
tached to the end of BS. This is performed on
Unit 9, drive 1 (a dual disk drive).

Whenever a variable is used as a filename, as in the last example, the filename variable

must be within parentheses.

CONT

Continue program execution

CONT

COPY

Copy a file from one drive to another within a dual disk drive. Copy one file to

another with a different name within a single drive

COPY [Ddrive number,]*source filename’’TO{Ddrive number,]‘‘destination

filename’’[<ON|,>Udevice]

NOTE: Copying between two single or double disk drive units cannot be
done. This command does not support unit-to-unit copying.

EXAMPLES:
COPY DO, “TEST” TO DI, “TEST PROG™

COPY DO, “*STUFF’ TO DI, “*STUFF>
COPY DO TO D1

COPY ““WORK.PROG"* TO *“BACKUP”’

DATA

Define data to be used by a program

DATA list of constants

EXAMPLE:

Copies “‘test’” from drive O to drive
1, renaming it *‘test prog’’ on drive 1.

Copies ““STUFF”’ fro